10 Planning and Implementing Security for Wireless Networks

Wi-Fi Protected Access :
Although WEP with dynamic re-keying is secure enough to meet the needs of most organizations, WEP still has security weaknesses. WEP still uses a separate static key for broadcast packets. An attacker can analyze these broadcast packets to build a map of private IP addresses and computer names. WEP keys have to be renewed frequently, which places an additional burden on RADIUS services.

To address these lingering weaknesses with WEP, the Wi-Fi Alliance, a consortium of the leading wireless network equipment vendors, developed Wi-Fi Protected Access (WPA). WPA can use the same authentication mechanisms and encryption algorithms as WEP. This compatibility allows support for WPA to be added to WAPs with a simple firmware upgrade. However, WPA virtually eliminates WEP’s most exploited vulnerability by using a unique encryption key for each packet.

Other Wireless Security Techniques :
WEP and WPA are the most important wireless network security techniques. However,there are several secondary security techniques that you should be familiar with: media access control (MAC) address filtering, disabling SSID broadcasts, and VPNs.

MAC address filtering
One common technique used to make it more difficult for a casual user to connect to your wireless network is to configure your WAPs to allow only a predefined set of MAC addresses. Just like wired Ethernet cards, every wireless network card is assigned a unique MAC address by the manufacturer.

When a WAP is configured to use MAC address filtering, it will ignore any messages from wireless cards that use a MAC address not on the approved list. While this does improve security, it has significant manageability drawbacks. First, you must manually maintain the list of MAC addresses on your WAP, which would be impossible to do if you managed more than a dozen computers or multiple WAPs. Second, WAPs typically have limited memory and might not be able to store your organization’s complete list of MAC addresses. Third, if an attacker is knowledgeable and determined enough to
circumvent your WEP or WPA encryption, the attacker will also be able to identify and spoof an approved MAC address.

Disabling SSID broadcasts :
WAPs provide the option of disabling SSID broadcasts, but this should not be treated as a security feature. SSID broadcasts allow wireless clients to detect an available wireless network. In fact, Windows XP displays a notification to the user when it first receives a SSID broadcast from a wireless network. This is convenient; if you want users to be actively notified of the presence of the wireless client, you should enable SSID broadcasts.

Disabling SSID broadcasts will prevent the casual computer user from discovering your network, but it does nothing to prevent a skilled attacker from detecting your network. For example, a user with the free Network Stumbler tool installed can quickly identify the SSID of a wireless network that has SSID broadcasts disabled, because 802.11 association/ disassociation messages are always sent unencrypted and contain the SSID that the client wants to associate to or disassociate from.

VPNs :
While a VPN is an excellent solution for securely traversing a public network such as the Internet, VPNs are not the best solution for securing wireless networks. For this kind of application, a VPN is unnecessarily complex and costly. It adds little additional security to dynamic WEP, but it significantly increases costs, reduces usability, and removes important pieces of the functionality.

VPN clients usually require the user to initiate a connection to the VPN server; therefore, the connection will never be as transparent as a wired network connection. Non-Microsoft VPN clients might also prompt for logon credentials, in addition to the standard network or domain logon, when the connection is established. If the VPN disconnects because of a poor wireless signal or because the user is roaming between WAPs, the user has to repeat the connection process.

Google